Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS Comput Biol ; 18(9): e1010405, 2022 09.
Article in English | MEDLINE | ID: covidwho-2162508

ABSTRACT

Forecasts based on epidemiological modelling have played an important role in shaping public policy throughout the COVID-19 pandemic. This modelling combines knowledge about infectious disease dynamics with the subjective opinion of the researcher who develops and refines the model and often also adjusts model outputs. Developing a forecast model is difficult, resource- and time-consuming. It is therefore worth asking what modelling is able to add beyond the subjective opinion of the researcher alone. To investigate this, we analysed different real-time forecasts of cases of and deaths from COVID-19 in Germany and Poland over a 1-4 week horizon submitted to the German and Polish Forecast Hub. We compared crowd forecasts elicited from researchers and volunteers, against a) forecasts from two semi-mechanistic models based on common epidemiological assumptions and b) the ensemble of all other models submitted to the Forecast Hub. We found crowd forecasts, despite being overconfident, to outperform all other methods across all forecast horizons when forecasting cases (weighted interval score relative to the Hub ensemble 2 weeks ahead: 0.89). Forecasts based on computational models performed comparably better when predicting deaths (rel. WIS 1.26), suggesting that epidemiological modelling and human judgement can complement each other in important ways.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Forecasting , Humans , Pandemics , Poland/epidemiology
3.
PLoS Comput Biol ; 17(2): e1008618, 2021 02.
Article in English | MEDLINE | ID: covidwho-2109274

ABSTRACT

For practical reasons, many forecasts of case, hospitalization, and death counts in the context of the current Coronavirus Disease 2019 (COVID-19) pandemic are issued in the form of central predictive intervals at various levels. This is also the case for the forecasts collected in the COVID-19 Forecast Hub (https://covid19forecasthub.org/). Forecast evaluation metrics like the logarithmic score, which has been applied in several infectious disease forecasting challenges, are then not available as they require full predictive distributions. This article provides an overview of how established methods for the evaluation of quantile and interval forecasts can be applied to epidemic forecasts in this format. Specifically, we discuss the computation and interpretation of the weighted interval score, which is a proper score that approximates the continuous ranked probability score. It can be interpreted as a generalization of the absolute error to probabilistic forecasts and allows for a decomposition into a measure of sharpness and penalties for over- and underprediction.


Subject(s)
COVID-19/epidemiology , Communicable Diseases/epidemiology , Pandemics , COVID-19/virology , Forecasting , Humans , Probability , SARS-CoV-2/isolation & purification
4.
Commun Med (Lond) ; 2(1): 136, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2096834

ABSTRACT

BACKGROUND: During the COVID-19 pandemic there has been a strong interest in forecasts of the short-term development of epidemiological indicators to inform decision makers. In this study we evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland for the period from January through April 2021. METHODS: We evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland. These were issued by 15 different forecasting models, run by independent research teams. Moreover, we study the performance of combined ensemble forecasts. Evaluation of probabilistic forecasts is based on proper scoring rules, along with interval coverage proportions to assess calibration. The presented work is part of a pre-registered evaluation study. RESULTS: We find that many, though not all, models outperform a simple baseline model up to four weeks ahead for the considered targets. Ensemble methods show very good relative performance. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in previous periods. However, major trend changes in reported cases, like the rebound in cases due to the rise of the B.1.1.7 (Alpha) variant in March 2021, prove challenging to predict. CONCLUSIONS: Multi-model approaches can help to improve the performance of epidemiological forecasts. However, while death numbers can be predicted with some success based on current case and hospitalization data, predictability of case numbers remains low beyond quite short time horizons. Additional data sources including sequencing and mobility data, which were not extensively used in the present study, may help to improve performance.


We compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future.

5.
Sci Data ; 9(1): 462, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1967614

ABSTRACT

Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages.


Subject(s)
COVID-19 , Centers for Disease Control and Prevention, U.S. , Forecasting , Humans , Pandemics , United States/epidemiology
6.
Int J Forecast ; 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1914469

ABSTRACT

The U.S. COVID-19 Forecast Hub aggregates forecasts of the short-term burden of COVID-19 in the United States from many contributing teams. We study methods for building an ensemble that combines forecasts from these teams. These experiments have informed the ensemble methods used by the Hub. To be most useful to policy makers, ensemble forecasts must have stable performance in the presence of two key characteristics of the component forecasts: (1) occasional misalignment with the reported data, and (2) instability in the relative performance of component forecasters over time. Our results indicate that in the presence of these challenges, an untrained and robust approach to ensembling using an equally weighted median of all component forecasts is a good choice to support public health decision makers. In settings where some contributing forecasters have a stable record of good performance, trained ensembles that give those forecasters higher weight can also be helpful.

7.
American Journal of Public Health ; 112(6):839-842, 2022.
Article in English | ProQuest Central | ID: covidwho-1877289

ABSTRACT

[...]models can vary in terms of what data they use, what they assume about transmission, and what analytic approach they use to produce projections. Because of this, relying on one model is dangerous because there is no guarantee that one model's choices and assumptions will yield an accurate prediction. In many fields, there is a long tradition of combining multiple models to mitigate this limitation by providing a single prediction that summarizes the view of the participating models.7 There has been a growing interest in using ensemble methodologies in epidemiology, with notable efforts in forecasting, risk prediction, causal inference, and decision-making.8-12 COORDINATION, COLLABORATION, AND EVALUATION A modeling "hub" is a consortium of research groups organized around a particular scientific challenge. The US COVID-19 Forecast Hub ensemble (including many component models) has struggled to produce accurate forecasts of cases and hospitalizations during periods of rapidly changing epidemic dynamics, such as the US peak of the winter wave in early 2021 or the rapid increases associated with the Delta variant in summer 2021 or in winter 2021-2022.3 Likewise, although longer-term projections from the COVID-19 Scenario Modeling Hub projected a Delta-associated resurgence in the United States, the ensemble significantly underestimated its speed and size, even though there were no clear deviations from scenario assumptions.13 However, even when projections are wrong, the hubs play a role in enhancing the scientific rigor and integrity of epidemic modeling. [...]operationally, there is value in developing procedures that harness the insights of a diverse network of scientists while guarding against groupthink and overconfidence.12 As researchers, system developers, and public health officials who have been deeply involved in the real-time operation of modeling hubs duringthe COVID-19 pandemic and prior epidemics, we believe the hub approach is a vital path forward for predictive disease modeling efforts.

9.
Proc Natl Acad Sci U S A ; 119(15): e2113561119, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1784075

ABSTRACT

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.


Subject(s)
COVID-19 , COVID-19/mortality , Data Accuracy , Forecasting , Humans , Pandemics , Probability , Public Health/trends , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL